PID Control as a Process of Active Inference with Linear Generative Models
نویسندگان
چکیده
منابع مشابه
Variational Inference for Gaussian Process Models with Linear Complexity
Large-scale Gaussian process inference has long faced practical challenges due to time and space complexity that is superlinear in dataset size. While sparse variational Gaussian process models are capable of learning from large-scale data, standard strategies for sparsifying the model can prevent the approximation of complex functions. In this work, we propose a novel variational Gaussian proc...
متن کاملActive Inference: A Process Theory
This article describes a process theory based on active inference and belief propagation. Starting from the premise that all neuronal processing (and action selection) can be explained by maximizing Bayesian model evidence-or minimizing variational free energy-we ask whether neuronal responses can be described as a gradient descent on variational free energy. Using a standard (Markov decision p...
متن کاملVariational Inference of Correspondence-LDA with Multinomial Generative Process
In original Correspondence LDA (Corr-LDA) [1] the image region is generated by a multivariate Gaussian distribution. We replace this Gaussian distribution by a multinomial distribution, which gives a modified algorithm for parameter estimation. 1 Corr-LDA with Multinomial Generative Process To keep the consistence, we denote visual word and auditory word as sensory word. Thus, A document (a cap...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملScalable Inference in Hierarchical Generative Models
Borrowing insights from computational neuroscience, we present a family of inference algorithms for a class of generative statistical models specifically designed to run on commonly-available distributed-computing hardware. The class of generative models is roughly based on the architecture of the visual cortex and shares some of the same structural and computational characteristics. In additio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2019
ISSN: 1099-4300
DOI: 10.3390/e21030257